Extremal Elliptic Surfaces & Infinitesimal Torelli
نویسنده
چکیده
We describe in terms of the j-invariant all elliptic surfaces π : X → C with a section, such that h(X) = rankNS(X) and the Mordell-Weil group of π is finite. We use this to give a complete solution to infinitesimal Torelli for elliptic surfaces over P with a section.
منابع مشابه
Infinitesimal Torelli Theorem for Surfaces with C
In the present paper, we will prove the infinitesimal Torelli theorem for general minimal complex surfaces X’s with c1 = 3, χ(O) = 2, and Tors(X) ≃ Z/3, where c1, χ(O), and Tors(X) are the first Chern class, the Euler characteristic of the structure sheaf, and the torsion part of the Picard group of X, respectively. We will also show that all surfaces with the invariants as above are deformatio...
متن کاملElliptic Fibrations of Some Extremal Semi-stable K3 Surfaces
This paper presents explicit equations over Q for 32 extremal semistable elliptic K3 surfaces. They are realized as pull-back of non-semi-stable extremal rational elliptic surfaces via base change. Together with work of J. Top and N. Yui which exhibited the same procedure for the semi-stable extremal rational elliptic surfaces, this exhausts this approach to produce extremal semi-stable ellipti...
متن کاملElliptic Fibrations of Some Extremal K3 Surfaces
This paper is concerned with the construction of extremal elliptic K3 surfaces. It gives a complete treatment of those fibrations which can be derived from rational elliptic surfaces by easy manipulations of their Weierstrass equations. In particular, this approach enables us to find explicit equations for 38 semi-stable extremal elliptic K3 fibrations, 32 of which are indeed defined over Q. Th...
متن کاملInfinitesimal variations of Hodge structure and the global Torelli problem∗
The aim of this report is to introduce the infinitesimal variation of Hodge structure as a tool for studying the global Torelli problem. Although our techniques have so far borne fruit only in special cases, we are encouraged by the fact that for the first time we are able to calculate the degree of the period mapping when the Hodge-theoretic classifying space is not hermitian symmetric, as it ...
متن کاملIntegral Models of Extremal Rational Elliptic Surfaces
Miranda and Persson classified all extremal rational elliptic surfaces in characteristic zero. We show that each surface in Miranda and Persson’s classification has an integral model with good reduction everywhere (except for those of type X11( j), which is an exceptional case), and that every extremal rational elliptic surface over an algebraically closed field of characteristic p > 0 can be o...
متن کامل